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Einleitung Definition Hashfunktion

Definition Hashfunktion

Definition. Eine Hashfunktion ist eine Abbildung h, die mindestens
die folgenden zwei Eigenschaften besitzt:

= Kompression: h bildet einen Binarstring beliebiger Lange in einen
Binarstring fester Lange r ab.

= Effiziente Berechnung. Fiir jede Eingabe x ist h(x) effizient
berechenbar.
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Einleitung Definition Hashfunktion

Unterscheidung

Modification Detection Codes (MDCs):

= Berechnung eines Hashwerts, mittels der die Integritat der
zugehorigen Nachricht Gberpriifbar ist

Message Authentication Codes (MACs):

= Berechnung eine Priifsumme, mit der man die Integritat der
Nachricht sowie die Echtheit des Absenders liberpriifen kann

= Einsatz eines geheimen Schliissels als Teil der Eingabe

Bemerkung: MACs sind aus MDCs konstruierbar.
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Einleitung Definition Hashfunktion

Arten von MDCs

= Allgemeine Hashfunktionen ~~ bilden einen Binarstring
beliebiger Lange auf einen Hashwert fester Lange ab.

= Kompressionsfunktionen ~~ bilden Binarworter der Lange d auf
Binarworter der Lange r ab, wobei d > r.

= Nichtkomprimierende Hashfunktion ~~ bilden Binarworter der

Lange d auf Binarworter der Lange d ab. Dies sind zum Beispiel
One-Way Permutationen.
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Sicherheit von MDCs Sicherheitsanforderungen

Sicherheitsanfordungen fiir MDCs

= Preimage Resistance (One-Way): Fiir fast alle Hashwerte y ist
die Berechnung eines Urbilds x mit h(x) = y nicht effizient
durchfihrbar.

= 2nd Preimage Resistance (Weak Collision Resistance): Fiir fast
alle Nachrichten x ist die Berechnung einer zweiten Nachricht x’
mit h(x’) = h(x) nicht effizient durchfiihrbar.

= Collision Resistance (Strong Collision Resistance): Die Suche
zweier Nachrichten verschiedener x und x’ mit h(x) = h(x’) ist
nicht effizient durchfihrbar.
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Sicherheit von MDCs Sicherheitsanforderungen

Beispiel: Modulare Quadratur

Beispiel: Ist p eine Primzahl, dann besitzt die Abbildung
fix) = (¥ —1) mod p

keine Preimage Resistance, da man effizient die Quadratwurzeln
berechnen kann.

Ist n das Produkt zweier hinreichend groBer, zufallig gewahlter
Primzahlen, dann besitzt die Funktion

fix) = x* mod n

Preimage Resistance, falls das Faktorisierungsproblem nicht effizient
berechenbar ist. 2nd Preimage Resistance ist nicht vorhanden, da x
und n — x denselben Hashwert x> mod n besitzen.
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Sicherheit von MDCs Zufallsorakel

Zufallsorakel

= Referenzmodell fiir kryptografische Hashfunktionen

= Ziel: Bestimmung von optimalen Laufzeitschranken fiir mogliche
Angriffe

= KomplexitatsmaB: Anzahl der Aufrufe der Hashfunktion

= |dee: fir jede Nachricht wird ein Hashwert zufallig unter
Gleichverteilung ausgewahlt

= Black-Box-Ansatz: der Nutzer kann Hashwerte berechnen, erhalt
aber keine Informationen liber den Aufbau der Hashfunktion
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Sicherheit von MDCs Zufallsorakel

Zufallsorakel — Algorithmus

RANDOMORACLE 4, (X)

Input: Binarstring x € {0, 1}¢

Output: Binarstring y € {0, 1}

External: Zweispaltige Tabelle T (z.B. Rot-Schwarz-Baum)

1: if xe T then

22y TiX

3: else

4: Ziehe y zufallig unter Gleichverteilung aus {0, 1}".
5 Tlx] « y

6: return y

Bemerkung: Der Inhalt von T bleibt zwischen zwei Aufrufen von
RANDOMORACLE(4,) erhalten.
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Sicherheit von MDCs Zufallsorakel

Eine wichtige Eigenschaft

Eigenschaft 1. Ist £:{0,1} — {0, 1}" ein Zufallsorakel, dann gilt

1

Prob[fix) =y | ixi) = y1,..., fAx) = il = or

fir alle x € {0,1}9\ {x, ..., X} und alle y € {0, 1}".

Mit anderen Worten: Fiir jede neue Nachricht x wird ein Hashwert
zufallig unter Gleichverteilung ausgewahlt, unabhangig von den bisher
festgelegten Hashwerten.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern

FINDPREIMAGE(f, y, q)
Input: Hashfunktion f: {0, 1} — {0, 1}", Hashwert y € {0, 1}", ganze
Zahl g>1
Output: x € {0,1}9 mit f{x) = y oder Failure
1: Wahle eine Menge S C {0, 1} mit ||S]| = q.
2: for jedes x € S do
3: if f{x) =y then
4 return x
5. return Failure
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Satz 1. Angenommen, f:{0,1} — {0, 1} ist ein Zufallsorakel. Dann
gilt fir alle y € {0,1}" und alle g > 1: Die Wahrscheinlichkeit, dass
der Algorithmus FINDPREIMAGE(A, y, q) ein Urbild von y beziiglich f

findet, ist gleich
1 2r— 1\ 7
2r )
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Beweis. Seien die Menge S C {0, 1},
y € {0, 1} beliebig gewahlt.

S| = g, und der Hashwert

Angenommen, S enthalt die paarweise verschiedenen Elemente
X1y« ey Xg-

Wegen Eigenschaft 1 gilt

Prob[f(x;)) =yl = 2%
und o1
Prob[f(x;) # y] = 2_

furallei=1,...,q.

12/76
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Die Wahrscheinlichkeit, dass der Algorithmus kein Urbild fiir y findet,
ist

2r
Folglich ist die Erfolgswahrscheinlichkeit des Algorithmus gleich

Prob[flx)) Zy/N...Nflxg) #yl = (2r_ 1) .

1 —Prob[fix;) #y/N...Nfixg) #yl=1— <2r2_rl>q.

Somit ist der Satz bewiesen.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Frage: Fiir welchen Wert von q ist die Erfolgswahrscheinlichkeit von
FINDPREIMAGE(A, y, q) gleich 37

Antwort: Wahle g so, dass
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beziehungsweise
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Hilfreich: Potenzreihe fir €*:

= X" P
eX:Zn—!:1+x+2—!+§+...
n=0
Folgerungen:
= Fir alle x gilt: € > 1+ x.
= Ist |x] < 1, dannist e~ 1+ x.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)
Grafik:

1.4 T T T T T T T T T T T
1+x
exp(x)
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Anwendung:

liefert
g>1In(2)-2".

Ergebnis: Man muss ungefahr 2" verschiedene Elemente aus {0, 1}¢
auswerten, um mit einer Wahrscheinlichkeit von 50% eine Kollision
zu finden.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern

FINDSECONDPREIMAGE(f, X, q)
Input: Hashfunktion 7:{0, 1} — {0, 1}", Nachricht x € {0, 1}¢, ganze
Zahl ¢ > 2
Output: X' € {0,1} mit Ax) = fix') oder Failure
1. y fix)
2: Wahle eine Menge S C {0, 1}9\ {x} mit ||S|| = g — 1.
3: for jedes X' € S do
4: if {x') =y then
5 return x’
6: return Failure
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Satz 2. Angenommen, f:{0,1}9 — {0, 1}" ist ein Zufallsorakel. Dann
gilt fiir alle x € {0,1}¢ und alle g > 1: Die Wahrscheinlichkeit, dass
der Algorithmus FINDSECONDPREIMAGE(f, X, q) ein von x
verschiedenes Urbild von f(x) findet, ist gleich

Beweis: analog zu Satz 1.
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen

FINDCOLLISION(, q)

Input: Hashfunktion f, ganze Zahl g > 2

Output: Kollision fiir f oder Failure

- Wahle eine Menge S C {0, 1}9 mit ||S]| = q.

. for jedes x € Sdo
Vx| & f(x)

if es gibt x,x’ € S mit x # x’ und Y[x] = Y[x] then
return (x, x’)

else
return Failure

N g R ey
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Satz 3. Angenommen, f:{0,1} — {0, 1} ist ein Zufallsorakel. Dann
gilt fir alle g > 2: Die Wahrscheinlichkeit, dass der Algorithmus
FINDCOLLISION(f, q) eine Kollision fiir f findet, ist gleich

L (21 (22 2 —q+1
or or or '
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Beweis. Anwendung des Geburtstagsparadoxons: Sei S C {0, 1}9,
|S|| = g, beliebig gewahlt.

Angenommen, S enthalt die paarweise verschiedenen Elemente
Xiy...yXq. Dann steht E; fiir das Ereignis

fixi) & {fxa)y ..oy fixia) )by
wobei i=1,...,4q.
Es ist Prob[E;] = 1. Wegen Eigenschaft 1 gilt:

2—i+1

PI’Ob[E,' | E1 N E2 N...N E,'_1] = o

Prof. Dr. C. Karg (HS Aalen) Angewandte Kryptographie Kryptogr. Hashfunktionen



Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Die Wahrscheinlichkeit, dass der Algorithmus keine Kollision findet,
ist
PI’Ob[El N E2 N...N Eq]

Durch Anwendung des allgemeinen Multiplikationssatzes folgt:

PI’Ob[El ﬂEgﬂﬂ

Die Wahrscheinlichkeit, dass eine Kollision gefunden wird, ist
1—Prob[ENEN...NEy.

Somit ist der Satz bewiesen.

E,] =
2r—1Y\ [2r—2 2r—q+1
) (57)-(557)
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Frage: Wie groB muss g gewahlt werden, dass mit
Wahrscheinlichkeit von 50% eine Kollision gefunden wird?

Antwort: Wahle g so, dass

beziehungsweise
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Umformen:

qg—1 . q— .
2 —

(%) -T1(-5

. 2" . 2"

i=1 =1

Da 1+ x= ¢ falls [x] <« 1, folgt:

h(l__> i_[ ir_ 7112*’.')

i=1
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Abschatzung:

genau dann, wenn

. (Z _,.> <un(3)
— 2r | — 2
i=1
genau dann, wenn
2 _
qzq_mm
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Da ¢*> > ¢° — q fiir alle ¢ > 0, folgt

2
7 >(2)

und somit

q> +/In(2)2r = Q(27?)

Ergebnis: Man muss etwa 2”2 verschiedene Elemente aus {0, 1}¢
untersuchen, um mit einer Wahrscheinlichkeit von 50% eine Kollision
zu finden.
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Sicherheit von MDCs Suche von Kollisionen

/Zusammenfassung

Aufwandsabschatzung fiir eine Hashfunktion auf Basis eines
Zufallsorakels:

’ Angriff \ Aufwand ‘
Berechnung eines Urbilds 2"
Berechnung eines zweiten Urbilds 2"
Berechnung einer Kollision 21/2

Bemerkung: Man kann beweisen, dass die obigen Algorithmen fir
Zufallsorakel optimal sind.

Prof. Dr. C. Karg (HS Aalen) Angewandte Kryptographie Kryptogr. Hashfunktionen 28/76



Damgard-Merkle Verfahren

Damgard-Merkle Verfahren

= Problem: Zufallsorakel sind in der Praxis nicht einsetzbar

= Losung: Einsatz eines Verfahrens, das auf Arbeiten von lvan
Damgard und Ralph Merkle basiert

= |dee: Konstruktion einer Hashfunktion durch iterative
Anwendung einer Kompressionsfunktion

= Fakt: Ist die Kompressionsfunktion kollisionsresistent, dann
besitzt auch die Hashfunktion diese Eigenschaft.
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Damgard-Merkle Verfahren

Damgard-Merkle Konstruktion — Idee

|
J

Prof. Dr. C. Karg (HS Aalen)

Angewandte Kryptographie

Nachricht x | Padding
M, | M, | M, ‘ ............................ ‘ M, ; | M,
| |
hy m ha Flo | F P f P
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Damgard-Merkle Verfahren

Damgard-Merkle Konstruktion — Algorithmus

DAMGARDMERKLEHASHING(x)
Input: Nachricht x € {0, 1}
Output: Hashwert y € {0,1}"
External: Kompressionsfunktion f: {0, 1}"*" — {0, 1}"
1: Verlangere x durch Einsatz einer geeigneten Paddingfunktion so,
dass die Lange von x ein Vielfaches von r ist.
Zerlege x in die r-Bit Blocke My, M, ..., M,.
Ho « 0
fori— 1,...,kdo
H;  fiH1|IM;)
return H,

AR
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Damgard-Merkle Verfahren

Hashfunktionen auf Basis von Damgard-Merkle

= MD4 von Ron Rivest

MD5 von Ron Rivest

SHAL (NIST-Standard)
SHA2-Familie (NIST-Standard)
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SHA-256  Ubersicht

Secure Hash Algorithm 2 Familie

Algorithmus Nachrichten-  Block- Wort- Linge
lange linge linge  Priifsumme
SHA-1 < 264 512 32 160
SHA-224 < 264 512 32 224
SHA-256 < 264 512 32 256
SHA-384 < 2128 1024 64 384
SHA-512 < 2128 1024 64 512
SHA-512/224 < 2128 1024 64 224
SHA-512/256 < 2128 1024 64 256

(Alle Angaben in Bit)
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SHA-256  Ubersicht

Aufbau von SHA-256

= SHA-256 arbeitet auf Basis von 32-Bit Woértern.

= Der interne Zustand umfasst 256 Bit, aufgeteilt in 8 32-Bit
Worter.

= Die zu verarbeitende Nachricht wird in 512-Bit Blocke aufgeteilt.

» Die Kompressionsfunktion besteht aus einer Schleife mit 64
Runden.

= Die eingesetzten Konstanten werden anhand der
Nachkommastellen von Quadrat- und Kubikwurzeln von
Primzahlen berechnet.
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SHA-256 ~ Operationen

Operationen

Wortlange: w € {32, 64}

Operationen:

Logische Operationen: /\, \V, &, —

Addition modulo 2%

Rechts-Shift: SHR"(x) = x> n, wobei 0 < n<w-—1
Links-Shift: SHL"(x) = x < n, wobei 0 < n<w-—1
Rechts-Rotation: ROTR"(x) = (x> n) V (x < w— n), wobei
0<n<w—-1

Links-Rotation: ROTL"(x) = (x < n) V (x> w— n), wobei
0<n<<w—-1
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SHA-256 Funktionen

Funktionen

Ch(x y,z) = (x\y) & (—xA 2)
Maj(x, y,2z) = (xA\y) ® (x\2) © (y N\ 2)
T2 () = ROTR}(x) ® ROTR(x) & ROTR?2(x)
£2%(x) = ROTR(x) ® ROTR™ (x) & ROTR?®(x)
0% (x) = ROTR' (x) ® ROTR®(x) & SHR®(x)
0% (x) = ROTRY (x) ® ROTR(x) & SHR™(x)

Bemerkung: Jede der Funktionen verarbeitet 32-Bit Worter.
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SHA-256 Konstanten

Konstanten ng%}

= |n SHA-256 kommen die 32-Bit Konstanten
Kg%}, K{1256}, ceny K{256} zum Einsatz.

. KE-ZSG} ist gleich den ersten 32 Bit der Nachkommastellen von
/Pir1, wobei pi1 die (i+ 1)-te Primzahl ist.
= Die Konstanten sind (von links oben nach rechts unten):

428a2f98 71374491
d807aa98 12835b01
e49b69c1 efbed786
983e5152 a831c66d
27b70a85 2e1b2138
a2bfe8al a81a664b
19a4c116 1e376c08
748£f82ee 78a5636f
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b5cOfbcf e9b5dbab 3956c25b
243185be 550c7dc3 72bebd74
0fc19dc6 240calcc 2de92c6f
b00327c8 bf597fc7 c6e00bf3
4d2c6dfc 53380d13 650a7354
c24b8b70 c76c51a3 d192e819
2748774c 34bObcbb5 391c0cb3
84c87814 8cc70208 90befffa
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59f111f1
80deblfe
4a7484aa
d5a79147
766a0abb
d6990624
4edB8aada
a4506ceb

923f82a4
9bdc06a7
5cb0a9dc
06ca6351
81c2c92e
£40e3585
5b9ccadf
bef9a3f7

ablcbedb
c19bf174
76£988da
14292967
92722c85
10622070
682e6ff3
c67178£2
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SHA-256 Konstanten

Beispiel: Berechnung von K{3256}

Beispiel. Berechnung von !63256}.

Die vierte Primzahl ist p; = 7. Also ist:
Vps = V7 =1.91293118277 ...

Berechnung der Nachkommastellen im Hexadezimalformat:

(1.91293118277 — 1
(233.71038279 — 233
(181.857994171 — 181
(219.646507848 — 219

-256 = 233.71038279 | (233)10 = (e9)
-256 = 181.857994171 | ( )10 = (b5)
- 256 219.646507848 | (219)10 = (db)16
-256 = 165.506009102 | (165)19 = (ab)

— — — —

Ergebnis: K2°% = (e9b5dbab);s
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SHA-256 Konstanten

Konstanten H,(-O)

= Die H-Konstanten werden zur Initialisierung des Zustands der
Kompressionsfunktion eingesetzt.

= Die Werte der Konstanten sind die ersten 32 Bit der
Nachkommastellen der Quadratwurzeln der ersten acht
Primzahlen.

= Die Konstanten sind:

HY = 6a09e667  H 510e527f
HY” = bb67ae85s H = 9b05688c
HY = 3c6ef372 HY = 1£83d9ab
HY = asaff53a  HY' = B5beOcd19

Prof. Dr. C. Karg (HS Aalen) Angewandte Kryptographie Kryptogr. Hashfunktionen 39/76



SHA-256 Padding

Padding einer Nachricht

PADDING(x)

Input: Nachricht x € {0, 1}*, wobei len(x) < 2%

Output: Padding p € {0, 1}*, so dass len(x]|p) ein Vielfaches von 512
ist

External: Funktion bings(£) zur Berechnung der 64-Bit
Binarkodierung der Zahl £ € {0,1,...,2% — 1}

1: £ len(x)

2: k¢ (448 —{—1) mod 512
3: p  1]/0¥|bines(¢)

4: return p
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SHA-256 Padding

Beispiel: Padding

Beispiel: Berechnung des Paddings der Nachricht x = abc, bzw.

x = 01100001 01100010 01100011.
=

=a =b =c

Wegen { = 24 ist
k= (448 — { — 1) mod 512 = 423.
Das Padding ist:

p=100...00 00...0011000
—_—— ———
423 Bit 64 Bit

Es gilt: len(x||p) = 24 + 1 + 423 4 64 = 512 Bit.
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SHA-256 Kompressionsfunktion

Kompressionsfunktion — Aufbau

[afbfcfa]e]fle]kr] We K0
I

v v
Maj 2{0256} Choose 2(1256)
M
8 |_>EE|<_| [] (|
H

M
L

(|
()

BRI

Prof. Dr. C. Karg (HS Aalen) Angewandte Kryptographie Kryptogr. Hashfunktionen 42 /76



SHA-256 Kompressionsfunktion

Kompressionsfunktion — Algorithmus

SHA256COMPRESS((a, b, ¢, d, e, f, g, h), K, W)
Input: Zustand (a, b, ¢, d, e, f, g, h), Wort K, Wort W
Output: Aktualisierter Zustand (a, b, ¢, d, e, f, g, h)
Ti=h+2%%e) + Chle, f,8) + K+ W

T, = 2;°"(a) + Maj(a, b, c)

h—g g« f

feeée«—d+ T,

de—ccb>b

be—a a «—T,+T,

return (a’,b',c/,d',e',f,g', h')

N g e =
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SHA-256 Verarbeitung eines Blocks

Verarbeitung eines Blocks

SHA256PROCESSBLOCK(S, M)
Input: Zustand S = (a, b, ¢, d, ¢, f, g, h), 512-Bit Block M
Output: Aktualisierter Zustand S’

1: Zerlege M in 16 32-Bit Blocke By, By, . . ., Bis.

2: fort=0,1,2,...,63 do

3: if t <15 then

4 W; «— B;

5: else

6: W, — 0% (W, o) + W7 + {256}(Wt715) + Wi_s6
7. fort=0,1,2,...,63 do

8 S SHA256C0MPRESS(S, K% w,)

9: return S’
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SHA-256 Verarbeitung eines Blocks

Verarbeitung einer Nachricht

SHA256(x)
Input: Nachricht x € {0, 1}*, wobei len(x) < 2°4.
Output: Priifsumme h € {0, 1}25°
1: M+ x || PADDING(x)
2: Zerlege M in die 512-Bit Blocke My, My, ..., M, 4
3: fori=0,1,2,...,n—1do

s S () HTHYLHD YLD, O, H)

5: (a, b, c,d, e f,g h) «— SHA256PROCESSBLOCK(S, M)
6 HYVe—a+H) HY — b4+ HY

7 H( 1)<—c+H)I-ﬁ'+1)Hd+H

8: H( o et HY H(’H)Hf—I—H

0 Hg’“)FngH) 'H)Hh—i—H

10: return H || H" || HY 3 I H I HD N HD | H | H
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SHA-224

SHA-224

SHA224(x)
Input: Nachricht x € {0, 1}*, wobei len(x) < 2%4.
Output: Priifsumme h € {0, 1}?*

1: h SHA256(x)

2: h' «+ die ersten 224 Bit von h

3: return b’
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SHA-224

SHA-384 und SHA-512

= SHA-512 arbeitet auf Basis von 64-Bit Woértern.

= Der interne Zustand von SHA-512 beinhaltet acht 64-Bit
Worter.

» Die Kompressionsfunktion von SHA-512 durchlauft 80 Runden.
= Die Konstanten von SHA-512 basieren auf den

Nachkommastellen von Quadrat- und Kubikwurzeln von
Primzahlen.

= SHA-384 ist eine Variante von SHA-512, bei der die Priiffsumme
auf 384 Bit verkiirzt wird.
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Secure Hashing Algorithm 3 Ubersicht

Secure Hashing Algorithm 3 (Keccak)

* Entwicklung von Guido Bertoni, Joan Daemen, Michaél Peeters
and Gilles Van Assche

= Alternative zu SHA-2
= Neuartiges Design: Sponge Funktionen
= Standardisierung in FIPS 202 (Verabschiedung August 2015)
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Secure Hashing Algorithm 3 Sponge Funktionen

Sponge Konstruktion

» Framework zur Konstruktion von Funktionen zur Verarbeitung
von Binardaten.

= Eine Sponge-Funktion kann Ausgaben beliebiger Lange erzeugen.

= Komponenten:
> Funktion f:{0,1}* — {0,1}?
> Kapazitat c€{1,2,...,b—1}
> Blocklange d =b—c¢
> Padding-Funktion pad: N x N — {0, 1}
* Nebenbedingung fiir das Padding: Fiir alle d und £ muss
€+ len(pad(d, £)) ein Vielfaches von d sein.
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Secure Hashing Algorithm 3~ Sponge Funktionen

Aufbau einer Sponge Funktion

1
1
Nachricht x | Padding : Hashwert |
M1|M2| ......... |Mk: h1|h2|h3‘h4|
1
1
M ! M M
dllo () () ............. ,E}) :
f f f : f f f
cllob—— ——| lo > :
\J ! o o
Absorbing ! Squeezing
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Secure Hashing Algorithm 3 Sponge Funktionen

Algorithmus SPONGEIf, pad, d|(M, r)

SPONGEf, pad, d|(M, r)
Input: Bindrwort x € {0, 1}*, ganze Zahl d > 0
Output: Hashwert h € {0, 1}
M — x || pad(d, len(x))
k < len(M)/d
c—b—d
Zerlege M in k d-Bit Blocke My, My, ..., M,
S=0°
for i=1to kdo
S« fiS® (M ] 09))

N g s
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Secure Hashing Algorithm 3 Sponge Funktionen

Algorithmus SPONGEIf, pad, d|(M, r) (Forts.)

8 h« ¢

9: while /en(h) < rdo
10: h < h || Truncy(S)
11: S« f5)

12: return Trunc,(Z)

Bemerkung: Die Funktion Trunc,(x) liefert die ersten r Bits von x.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Permutation KECCAK-p

* In SHA3 kommt die Permutationsfamilie KECCAK-p fir fzum
Einsatz.
= Die Permutation KECCAK-p[b, n,] wird festgelegt durch:
> Wortlange b € {25, 50, 100, 200, 400, 800, 1600}
> Anzahl der Iterationen n, € N

= Die Permutation wird durch eine Folge von Transformationen
(step mappings) berechnet.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von KECCAK-p|b, n,]

= Der interne Zustand S von KECCAK-p[b, n,] besteht aus b Bit.
= S wird als Array A der Dimension 5 X 5 X w interpretiert, wobei

| b | 2550 [ 100 | 200 | 400 | 800 | 1600 |
w=b/25 [1[2] 4] 8 [16]32] 64
{=1log,(w)| O | 1] 2 3 4 5 6

= Die Tiefe w des Arrays orientiert sich an der Wortlange
moderner Prozessoren.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von KECCAK-pl[b, n,] (Forts.)

3 4 0 1 2
X

GréBe: 5 x 5 x w Bit

Beachte: In der Darstellung ist die z-Achse im Zentrum.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von KECCAK-pl[b, n,] (Forts.)

Yy

Lane Plane

Q

Column Slice
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von KECCAK-pl[b, n,] (Forts.)

Konvertierung von S nach A: Fiir alle (x, y, z), wobei 0 < x < 5,
0<y<bund0<z<w, ist:

Alx, y, 2] = SIw(5y + x) + Z]
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von KECCAK-pl[b, n,] (Forts.)

Konvertierung von A nach S:
= Fir alle (/,/), wobei 0 < i< 5und 0 < /<5, ist:

Lane(i, j) = Ali, j, 01 || Ali, j, 11 1| ... || Aliyj, w—1]
= Fir alle j, wobei 0 < j < 5, ist:

Plane(j) = Lane(0,)) || Lane(1,j) || ... || Lane(4,))
* Insgesamt:

S = Plane(0) || Plane(1) || ... || Plane(4)
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Secure Hashing Algorithm 3 Permutation Keccak-p

KECCAK-p[b, n,] — Algorithmus

= Der Algorithmus zur Berechnung von KECCAK-p[b, n,] ist eine
Schleife mit n, Durchlaufen.

* Der Algorithmus arbeitet auf dem dreidimensionalen Array A.

= Die Rundenfunktion lautet
RND(A, i) = x(7(p(0(A)))), 1),

wobei j fiir die Laufvariable steht.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion 0

Ziel: Manipulation der Columns
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion © — Algorithmus

6(A4)
Input: Zustandsarray A
Output: Zustandsarray A’

1: for alle (x,z) mit0 < x<5und 0<z< wdo
2: Clx, z] « @LO Alx, i, Z]
3: foralle (x,z) mit0<x<5und0<z<wdo
4:

D[x, z] «+ C[(x— 1) mod 5, Z]

@Cl(x+ 1) mod 5,(z— 1) mod w]

5. for alle (x,y,z) Mit0 < x<5 0<y<5und0<z< wdo
6: Alx, y, z| « Alx,y, z| & Dlx, Z]
7: return A’
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion p — Algorithmus

p(A)
Input: Zustandsarray A
Output: Zustandsarray A’

1: for alle zmit 0 < z< wdo

2: A’10,0, z] « A[0,0, Z]

33 x—1,y«0

4: for t =10 to 23 do

forz=0tow—1do
s— (z—(t+1)(t+2)/2) mod w
A'lx, y, 2] « Alx, y, s]

X —x; x—y

0: y ¢ (2x" + 3y) mod 5

10: return A’
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Secure Hashing Algorithm 3

Permutation Keccak-p

Funktion p — Interpretation

= Die Funktion p fiihrt zyklische Rotationen innerhalb der Lanes

durch.

= Der Offset der Rotationen hangt von der Position der Lane ab:

|

HX:3‘X:4‘X:0‘X:1‘X:2‘

y=21] 153 | 231 | 3 | 10 | 171
y=1] 55 | 276 | 36 | 300 | 6

y=0] 28 | oL | 0 1 | 190
y=4 120 | 78 | 210 | 66 | 253
y=3]| 21 | 136 | 105 | 45 | 15
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion 7t — Aufbau

(]
o>

AL A h
o B A [
: 2 %
gL Rl
e [V 1 N
Ziel: Manipulation der Slices
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion 7t — Algorithmus

7(A)
Input: Zustandsarray A
Output: Zustandsarray A’

1: for x=0 to 4 do

2 for y=0to 4 do

3: forz=0tow—1do
4

5:

. return A’ A’lx, y, 2] « Al(x+ 3y) mod 5, x, Z]
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion ¥ — Aufbau

_COEEE
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Ziel: Manipulation der Rows
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion x — Algorithmus

x(A)
Input: Zustandsarray A
Output: Zustandsarray A’
1: for x=0to 4 do
2 for y=0to 4 do
3: forz=0to w—1do
4: a— 1@ Al(x+1) mod5,y, 7
5 b+ a/AAl(x+2) mod 5, y, Z]
6 Allx, y,zl — Alx, y,zl & b
7: return A’

Bemerkung: x ist eine nicht-lineare Abbildung.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion t — Aufbau

Ziel: Manipulation der Bits auf Lane (0, 0)
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion ¢ — Algorithmen

RC(t)
Input: Ganze Zahl t
Output: 1 Bit
1: if t mod 255 == 0 then
2: return 1
3: R« 10000000
4: for i=1 to t mod 255 do

5: R—O0| R

6: R[0] «+ R[0] + R[8]
7: R[4] « R[4] + R[8]
8: R[5] «+ R[5] + R[8]
9: R[6] «+ R[6] + R[8]

10: R « Truncg(R)
11: return R[0]
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion ¢ — Algorithmen

WA, i)
Input: Zustandsarray A, Rundenindex i
Output: Zustandsarray A’

1: for x=0to 4 do

2: for y=0to 4 do

3: forz=0to w—1do

4 A'lx, y, 2] « Alx, y, 2]
5. rc+— Q%

6: for j=0to { do

7: rc2 — 1] « RC(j + 7i)

8 forz=0tow—1do

0: A’10,0, z] « A’[0,0, z] P rc[Z]
10: return A’
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Secure Hashing Algorithm 3 Permutation Keccak-p

KECCAK-plb, n,] — Algorithmus (Forts.)

KEcCAK-plb, n](S)
Input: Zustand S € {0, 1}>
Output: Aktualisierter Zustand S’ € {0, 1}°
w ¢ b/25; €+ log,(w)
Konvertiere S in ein Array A der Dimension 5 X 5 x w.
fori =20 +12—n,to 20 +12—1 do
A — RND(A, /)
Konvertiere A in einen Bit-String S’ der Lange b.
return S’

A T i e
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Secure Hashing Algorithm 3 Multi Range Padding

Multi-Range Padding

MRPAD(m, n)
Input: Ganze Zahl m > 1, ganze Zahl n >0
Output: Bindrwort x, mit der Eigenschaft, dass n+ len(x) ein
Vielfaches von m ist
1: j« (—n—2) mod m
2 return 1|0/ 1

Bemerkung: Diese Funktion nennt man auch 10*1-Padding.
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Secure Hashing Algorithm 3 Keccak|c]

KEccaK]d

= KECCAK[(] ist eine Familie von Sponge-Funktionen.

= KECCAK-p[b,2{ + 12] kommt als Rundenfunktion f zum
Einsatz.

= Die verwendete Padding-Funktion ist MR PAD.
= Zulassige Parameter sind:

> b € {25,50, 100,200, 400, 800, 1600}
> cef{l,2,...,b—1}
= Definition:

Keccaxk[d(x, r) =
SPONGE[KECCAK-p[1600, 24], MRPAD, 1600 — ] (x, r)
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Secure Hashing Algorithm 3 Keccak|c]

SHA-3 Hashfunktionen

Der SHA-3 Standard umfasst folgende Hashfunktionen:

SHA3-224(x) = KECCAK[448](x || 01,224)
SHA3-256(x) = KEccAKk([512](x || 01, 256)
SHA3-384(x) = KECCAK|[768](x || 01, 384)
SHA3-512(x) = KECcCAK[1024](x || 01,512)
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Zusammenfassung

/Zusammenfassung

= Kryptografische Hashfunktionen kommen in verschiedenen
kryptografischen Anwendungen zum Einsatz, z.B. bei der
Berechnung von Priifsummen.

= Zufallsorakel sind das Referenzmodell fiir die Analyse von
kryptografischen Hashfunktionen.

= Viele kryptografische Hashfunktionen wie etwa SHA-1 und
SHA-2 basisieren auf der Merkle-Damgard Konstruktion.

» Bei SHA-3 kommt mit Sponge-Funktionen ein neuartiges Design
zum Einsatz.
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