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Einleitung Definition Hashfunktion

Definition Hashfunktion

Definition. Eine Hashfunktion ist eine Abbildung h, die mindestens
die folgenden zwei Eigenschaften besitzt:

= Kompression: h bildet einen Binarstring beliebiger Lange in einen
Binarstring fester Lange r ab.

= Effiziente Berechnung. Fiir jede Eingabe x ist h(x) effizient
berechenbar.
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Einleitung Definition Hashfunktion

Unterscheidung

Modification Detection Codes (MDCs):

= Berechnung eines Hashwerts, mittels der die Integritat der
zugehorigen Nachricht Gberprifbar ist

Message Authentication Codes (MACs):

= Berechnung eine Priifsumme, mit der man die Integritat der
Nachricht sowie die Echtheit des Absenders liberpriifen kann

= Einsatz eines geheimen Schliissels als Teil der Eingabe

Bemerkung: MACs sind aus MDCs konstruierbar.
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Einleitung Definition Hashfunktion

Arten von MDCs

= Allgemeine Hashfunktionen ~~ bilden einen Binarstring
beliebiger Lange auf einen Hashwert fester Lange ab.

= Kompressionsfunktionen ~~ bilden Binarworter der Lange d auf
Binarworter der Lange r ab, wobei d > r.

= Nichtkomprimierende Hashfunktion ~~ bilden Binarworter der

Lange d auf Binarworter der Lange d ab. Dies sind zum Beispiel
One-Way Permutationen.
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Sicherheit von MDCs Sicherheitsanforderungen

Sicherheitsanfordungen fir MDCs

= Preimage Resistance (One-Way): Fiir fast alle Hashwerte y ist
die Berechnung eines Urbilds x mit h(x) = y nicht effizient
durchfiihrbar.

= 2nd Preimage Resistance (Weak Collision Resistance): Fiir fast
alle Nachrichten x ist die Berechnung einer zweiten Nachricht x
mit h(x’') = h(x) nicht effizient durchfiihrbar.

= Collision Resistance (Strong Collision Resistance): Die Suche
zweier Nachrichten verschiedener x und x’ mit h(x) = h(x’) ist
nicht effizient durchfiihrbar.

/
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Sicherheit von MDCs Sicherheitsanforderungen

Beispiel: Modulare Quadratur

Beispiel: Ist p eine Primzahl, dann besitzt die Abbildung
fix) = (¥ —1) mod p

keine Preimage Resistance, da man effizient die Quadratwurzeln
berechnen kann.

Ist n das Produkt zweier hinreichend groBer, zufallig gewahlter
Primzahlen, dann besitzt die Funktion

fix) = x* mod n

Preimage Resistance, falls das Faktorisierungsproblem nicht effizient
berechenbar ist. 2nd Preimage Resistance ist nicht vorhanden, da x
und n — x denselben Hashwert x> mod n besitzen.
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Sicherheit von MDCs Zufallsorakel

Zufallsorakel

= Referenzmodell fiir kryptografische Hashfunktionen

= Ziel: Bestimmung von optimalen Laufzeitschranken fiir mogliche
Angriffe
= KomplexitatsmalB: Anzahl der Aufrufe der Hashfunktion

= |dee: fiir jede Nachricht wird ein Hashwert zufallig unter
Gleichverteilung ausgewahlt

= Black-Box-Ansatz: der Nutzer kann Hashwerte berechnen, erhalt
aber keine Informationen tber den Aufbau der Hashfunktion
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Sicherheit von MDCs Zufallsorakel

Zufallsorakel — Algorithmus

RANDOMORACLE 4, (X)

Input: Binarstring x € {0, 1}¢

Output: Binérstring y € {0, 1}

External: Zweispaltige Tabelle T (z.B. Rot-Schwarz-Baum)

1. if x&€ T then

2 y — T[x]

3: else

4: Ziehe y zufallig unter Gleichverteilung aus {0, 1}".
5 TIx] <y

6: return y

Bemerkung: Der Inhalt von T bleibt zwischen zwei Aufrufen von
RANDOMORACLE 4 erhalten.
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Sicherheit von MDCs Zufallsorakel

Eine wichtige Eigenschaft

Eigenschaft 1. Ist f:{0,1}9 +— {0, 1}" ein Zufallsorakel, dann gilt

1

Prob[fix) =y | fix1) = y1,..., Axk) = yi] = or

fir alle x € {0,1}9\ {x1, ..., X} und alle y € {0, 1}".

Mit anderen Worten: Fiir jede neue Nachricht x wird ein Hashwert
zufallig unter Gleichverteilung ausgewahlt, unabhangig von den bisher
festgelegten Hashwerten.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern

FINDPREIMAGE(T, y, q)
Input: Hashfunktion f: {0, 1}¢ — {0, 1}", Hashwert y € {0, 1}, ganze
Zahl g >1
Output: x € {0, 1}¢ mit f{x) = y oder Failure
1: Wihle eine Menge S C {0, 1} mit ||S]| = q.
2: for jedes x € S do
3: if {x) =y then
4 return x
5. return Failure
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Satz 1. Angenommen, f:{0,1}9 +— {0, 1}" ist ein Zufallsorakel. Dann
gilt fir alle y € {0,1}" und alle g > 1: Die Wahrscheinlichkeit, dass
der Algorithmus FINDPREIMAGE(T, y, g) ein Urbild von y beziiglich f

findet, ist gleich
7))
1— .
2[‘
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Beweis. Seien die Menge S C {0,1}9, |
y € {0, 1}" beliebig gewahlt.

S|| = g, und der Hashwert

Angenommen, S enthalt die paarweise verschiedenen Elemente
X1y e ooy Xg-

Wegen Eigenschaft 1 gilt

Prob[flx;)) = y| = zir
und 1
Prob[flx;) # y| = >

furalle i=1,...,q.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Die Wahrscheinlichkeit, dass der Algorithmus kein Urbild fir y findet,
st

Prob[fix;) Zy/N\...ANfilx,) #y] = (sz_r 1) .

Folglich ist die Erfolgswahrscheinlichkeit des Algorithmus gleich

1 —Prob[fix;) Zy/N...Nflxg) #yl=1— (2r2_rl) :

Somit ist der Satz bewiesen.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Frage: Fir welchen Wert von g ist die Erfolgswahrscheinlichkeit von
FINDPREIMAGE(H, y, q) gleich 37?

Antwort: Wahle g so, dass

2r—1\7 _ 1
1— > =
o ) T2

beziehungsweise
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Hilfreich: Potenzreihe fur e*:

= X" 23
eX:ZOF!:1+X+2_!+§+"'

Folgerungen:
= Fur alle x gilt: &> 1+ x.
= Ist [ < 1, dannist e~ 1+ x.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)
Grafik:

14 T T T T T T T T T

T
1+x
exp(x)
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Anwendung:

Die Umformung der Ungleichung
e < !
-2
liefert
qg>1n(2)-2".

Ergebnis: Man muss ungefahr 2" verschiedene Elemente aus {0, 1}¢
auswerten, um mit einer Wahrscheinlichkeit von 50% eine Kollision
zu finden.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern

FINDSECONDPREIMAGE(, X, q)
Input: Hashfunktion f:{0,1}¢ — {0, 1}, Nachricht x € {0, 1}¢, ganze
Zahl g > 2
Output: x’ €{0,1}9 mit f{x) = {x') oder Failure
1.y« flx)
2: Wihle eine Menge S C {0, 1}9\ {x} mit ||S|| = ¢ — 1.
3: for jedes x' € Sdo
4: if {x') =ythen
5 return x’
6: return Failure
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Satz 2. Angenommen, f:{0,1}9 +— {0, 1}" ist ein Zufallsorakel. Dann
gilt fiir alle x € {0,1}¢ und alle g > 1: Die Wahrscheinlichkeit, dass
der Algorithmus FINDSECONDPREIMAGE(f, x, ) ein von x
verschiedenes Urbild von f{x) findet, ist gleich

Beweis: analog zu Satz 1.
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen

FINDCOLLISION(, q)
Input: Hashfunktion f, ganze Zahl g > 2
Output: Kollision fiir f oder Failure
1: Wihle eine Menge S C {0, 1} mit ||S]| = q.
2: for jedes x € S do
30 Y« fx)
4: if es gibt x,x’ € S mit x £ x’ und Y[x] = Y[x/] then
5 return (x, x’)
6: else
7 return Failure
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Satz 3. Angenommen, f:{0,1}9 +— {0, 1}" ist ein Zufallsorakel. Dann
gilt fur alle g > 2: Die Wahrscheinlichkeit, dass der Algorithmus
FINDCOLLISION(, q) eine Kollision fir f findet, ist gleich

(21 (=2 2 —g+1
or or or '
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Beweis. Anwendung des Geburtstagsparadoxons: Sei S C {0, 1}9,
|S|| = q, beliebig gewahlt.

Angenommen, S enthalt die paarweise verschiedenen Elemente
X1, ...y Xq. Dann steht E; fur das Ereignis

fixi) & {flxa), ..., fixi-1))
wobei i=1,...,q.
Es ist Prob[E;] = 1. Wegen Eigenschaft 1 gilt:

2" —i+1

PFOb[E,' | ElﬁEgﬂ...ﬁE,'_l] = o
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Die Wahrscheinlichkeit, dass der Algorithmus keine Kollision findet,

Ist
PI’Ob[El N E2 N...N Eq}

Durch Anwendung des allgemeinen Multiplikationssatzes folgt:

Prob[E;NEN...NE] =
2r—1 2r —2 2"—qg+1
or 2r 2r '

Die Wahrscheinlichkeit, dass eine Kollision gefunden wird, ist

1—Prob[E1ﬂE2ﬂ...ﬂEq].

Somit ist der Satz bewiesen.
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Frage: Wie groB muss g gewahlt werden, dass mit
Wahrscheinlichkeit von 50% eine Kollision gefunden wird?

Antwort: Wahle g so, dass

beziehungsweise
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Umformen:

al 2F— - i
(%) 11>
=1 i=1

Dal+ x~ ¢ falls [x < 1, folgt:

gqg—1 . g—1 _
H (1—%) %Heﬁ_’f :e_(
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Abschatzung:
() <1
-2
genau dann, wenn
g1 .
i 1
(£4)<n(;
(53)<n()
i=1
genau dann, wenn
2 _
g - 9> m(2)
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Da ¢> > g°> — q fiir alle g > 0, folgt

und somit
g > +/In(2)2r = Q(27%)

Ergebnis: Man muss etwa 272 verschiedene Elemente aus {0, 1}¢

untersuchen, um mit einer Wahrscheinlichkeit von 50% eine Kollision
zu finden.
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Sicherheit von MDCs Suche von Kollisionen

Zusammenfassung

Aufwandsabschatzung fiir eine Hashfunktion auf Basis eines
Zufallsorakels:

Angriff Aufwand
Berechnung eines Urbilds 2"
Berechnung eines zweiten Urbilds 2"
Berechnung einer Kollision r/2

Bemerkung: Man kann beweisen, dass die obigen Algorithmen fiir
Zufallsorakel optimal sind.
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Damgard-Merkle Verfahren

Damgard-Merkle Verfahren

= Problem: Zufallsorakel sind in der Praxis nicht einsetzbar

= |Losung: Einsatz eines Verfahrens, das auf Arbeiten von lvan
Damgard und Ralph Merkle basiert

= |dee: Konstruktion einer Hashfunktion durch iterative
Anwendung einer Kompressionsfunktion

= Fakt: Ist die Kompressionsfunktion kollisionsresistent, dann
besitzt auch die Hashfunktion diese Eigenschaft.

Prof. Dr. C. Karg (HS Aalen) Angewandte Kryptographie Kryptogr. Hashfunktionen 29 /76

Damgard-Merkle Verfahren

Damgard-Merkle Konstruktion — Idee

Nachricht x Padding
M, M, M | o M, ; M,
h h hy— h
hm:t—> f ! f 2 il > f k=1 f k h(X)
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Damgard-Merkle Verfahren

Damgard-Merkle Konstruktion — Algorithmus

DAMGARDMERKLEHASHING(x)
Input: Nachricht x € {0, 1}*
Output: Hashwert y € {0,1}"
External: Kompressionsfunktion f: {0, 1}""" +— {0, 1}"
1: Verlangere x durch Einsatz einer geeigneten Paddingfunktion so,
dass die Lange von x ein Vielfaches von r ist.
Lerlege x in die r-Bit Blocke My, M, ..., M.
Ho — 0
fori—1,..., kdo
H; «+ flHi_1||M;)
return H,
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Damgard-Merkle Verfahren

Hashfunktionen auf Basis von Damgard-Merkle

MD4 von Ron Rivest

MD5 von Ron Rivest

SHA1 (NIST-Standard)
SHA2-Familie (NIST-Standard)
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SHA-256  Ubersicht

Secure Hash Algorithm 2 Familie

Algorithmus Nachrichten-  Block- Wort- Lange
lange lange lange  Priifsumme
SHA-1 < 264 512 32 160
SHA-224 < 2064 512 32 224
SHA-256 < 264 512 32 256
SHA-384 < 2128 1024 64 384
SHA-512 < 2128 1024 64 512
SHA-512/224 < 2128 1024 64 224
SHA-512/256 < 2!28 1024 64 256
(Alle Angaben in Bit)
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SHA-256 Ubersicht

Aufbau von SHA-256

= SHA-256 arbeitet auf Basis von 32-Bit Woértern.

= Der interne Zustand umfasst 256 Bit, aufgeteilt in 8 32-Bit
Worter.

= Die zu verarbeitende Nachricht wird in 512-Bit Blocke aufgeteilt.

= Die Kompressionsfunktion besteht aus einer Schleife mit 64
Runden.

= Die eingesetzten Konstanten werden anhand der
Nachkommastellen von Quadrat- und Kubikwurzeln von
Primzahlen berechnet.
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SHA-256 Operationen

Operationen

Wortlange: w € {32, 64}
Operationen:
= Logische Operationen: A\, V, &, —
= Addition modulo 2"
= Rechts-Shift: SHR"(x) = x> n, wobei 0 < n<w-—1
= Links-Shift: SHL"(x) = x<< n, wobei 0 < n<w-—1
= Rechts-Rotation: ROTR"(x) = (x> n) V (x < w— n), wobei

0<n<w-—1
= Links-Rotation: ROTL"(x) = (x < n) \V (x> w— n), wobei
0<n<w-—-1
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SHA-256 Funktionen

Funktionen

) (—x /A 2)
) (xN\z)® (yN z)
(x) (x) & ROTRY(x) & ROTR*?(x)
2% (x) = ROTR(x) ® ROTR™ (x) & ROTR®®(x)
(x) (x) ® ROTR®(x) © SHR3(x)
(x)

Bemerkung: Jede der Funktionen verarbeitet 32-Bit Worter.
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SHA-256 Konstanten

256}

Konstanten ié

/

= |n SHA-256 kommen die 32-Bit Konstanten
Kg%}, ng‘%}, . ..,K%%} zum Einsatz.

l K£-256} ist gleich den ersten 32 Bit der Nachkommastellen von
/Pir1, wobei piq die (i+ 1)-te Primzahl ist.
= Die Konstanten sind (von links oben nach rechts unten):

428a2f98 71374491 b5cOfbcf e9bbdbab 3956c25b 59f111f1 923£82a4 ablchbedb
d807aa98 12835b01 243185be 550c7dc3 72bebd74 80deblfe 9bdc06a7 cl1l9bf174
e49b69cl efbed786 0fc19dc6 240calcc 2de92c6f 4a7484aa 5cb0a9dc 76£988da
983e5152 aB831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85
a2bfe8al a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070
19a4c116 1e376c08 2748774c 34bObcb5 391c0cb3 4ed8aada 5b9ccadf 682e6ff3
748£82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2
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SHA-256 Konstanten

Beispiel: Berechnung von @256}

Beispiel. Berechnung von }(2256}.

Die vierte Primzahl ist p, = 7. Also ist:
Ipa = V7 =1.91293118277 ...

Berechnung der Nachkommastellen im Hexadezimalformat:

(1.91293118277 —1) - 256 = 233.71038279 | (233)10 = (€9)16
(233.71038279 — 233) - 256 = 181.857994171 | (181)19 = (b5)16
(181.857994171 — 181) - 256 = 219.646507848 | (219)19 = (db)1g
(219.646507848 — 219) - 256 = 165.506009102 | (165)19 = (a5)16

Ergebnis: ng‘%} — (e9b5dbab)qs.
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SHA-256 Konstanten

Konstanten H,(-O)

= Die H-Konstanten werden zur Initialisierung des Zustands der
Kompressionsfunktion eingesetzt.

= Die Werte der Konstanten sind die ersten 32 Bit der
Nachkommastellen der Quadratwurzeln der ersten acht
Primzahlen.

= Die Konstanten sind:

HY = 6a09e667  H 510e527f
HY = bb67aess HY = 9b05688c
HY = 3ceef372 HY = 1£83d9ab
HY = ab4ff53a  HY 5be0cd19

Prof. Dr. C. Karg (HS Aalen) Angewandte Kryptographie Kryptogr. Hashfunktionen 39/76

SHA-256 Padding

Padding einer Nachricht

PADDING(x)
Input: Nachricht x € {0, 1}*, wobei len(x) < 2°4
Output: Padding p € {0, 1}, so dass len(x||p) ein Vielfaches von 512
st
External: Funktion bings({) zur Berechnung der 64-Bit
Binarkodierung der Zahl £ €{0,1,...,2% — 1}

1: £« len(x)

2. k¢ (448 — € — 1) mod 512

3: p ¢ 1/|04binea(€)

4: return p
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SHA-256 Padding

Beispiel: Padding

Beispiel: Berechnung des Paddings der Nachricht x = abc, bzw.

x = 01100001 01100010 01100011 .

—=a =b =cC

Wegen £ = 24 ist
k= (448 —{ — 1) mod 512 = 423,
Das Padding ist:

p=100...00 00...0011000

~
423 Bit 64 Bit

Es gilt: len(x|p) = 24 + 1 + 423 4 64 = 512 Bit.
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SHA-256 Kompressionsfunktion

Kompressionsfunktion — Aufbau

[a]efefd]elfle]r] We ||
|

Y VvV V Y Y VY Y
Maj 2?56} Choose 2{1256}
> M <
L4 >
. I—’EE|<—I . e e
M
|

/
/
/
/
/
/
/
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SHA-256 Kompressionsfunktion

Kompressionsfunktion — Algorithmus

SHA256CoMPRESS((a, b, ¢, d, e, f, g, h), K; W)
Input: Zustand (a, b, ¢, d, e, f, g, h), Wort K, Wort W
Output: Aktualisierter Zustand (a, b, ¢, d, e, f, g, h)
Ti=h+22%) + Chle, fg) + K+ W

T, = £5°%(a) + Maj(a, b, c)

h«— g g « f

fe e —d+ T

d«—ccd«b

b'—a, a «— T+ T,

return (a’,b',c’,d', e, f, g, h')

A A

Prof. Dr. C. Karg (HS Aalen) Angewandte Kryptographie Kryptogr. Hashfunktionen

SHA-256 Verarbeitung eines Blocks

Verarbeitung eines Blocks

SHA256PROCESSBLOCK(S, M)
Input: Zustand S = (a, b, ¢, d, e, f, g, h), 512-Bit Block M
Output: Aktualisierter Zustand S’
1: Zerlege M in 16 32-Bit Blocke By, By, ..., Bss.
2: fort=0,1,2,...,63 do
3: if t <15 then
4 W, < B,
5: else
6: W 0'{256}1(Wt—2) + W7 + 03256}( Wi—15) + Wi_i6
7. fort=0,1,2,...,63 do
8 S+« SHA256COMPRESS(S, K2°% W,)
9: return S’
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SHA-256 Verarbeitung eines Blocks

Verarbeitung einer Nachricht

SHA256(x)
Input: Nachricht x € {0, 1}*, wobei len(x) < 2°4.
Output: Priifsumme h € {0, 1}>*°
1: M« x|| PADDING(x)
2: Lerlege M in die 512-Bit Blocke My, My, ..., M, 4
3 fori=0,1,2,...,n~1do
4 S (Hy HY, HY HY HY HS HY S HY)

5 (a, byc,d, e f g h) SHA256PROCESSBLOCK(S, M;)
6: H“*”&HH CHY — pt HY

7: H( DHC—l—H),H'H)(—d—i—H

8: H( 1)+e+H)H o HY

0: Hg“) e +H) fi+1) <—h+H

10: return Hy” || H” || HY' K 1 H L HD ) HD ) HD | A
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SHA-224

SHA-224

SHA224(x)
Input: Nachricht x € {0, 1}*, wobei /len(x) < 2°4.
Output: Priifsumme h € {0, 1}>%*

1. h e SHA256(x)

2: h' « die ersten 224 Bit von h

3: return h’
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SHA-224

SHA-384 und SHA-512

= SHA-512 arbeitet auf Basis von 64-Bit Woértern.

= Der interne Zustand von SHA-512 beinhaltet acht 64-Bit
Worter.

= Die Kompressionsfunktion von SHA-512 durchlauft 80 Runden.

= Die Konstanten von SHA-512 basieren auf den
Nachkommastellen von Quadrat- und Kubikwurzeln von
Primzahlen.

= SHA-384 ist eine Variante von SHA-512, bei der die Prifsumme
auf 384 Bit verkiirzt wird.
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Secure Hashing Algorithm 3 Ubersicht

Secure Hashing Algorithm 3 (Keccak)

= Entwicklung von Guido Bertoni, Joan Daemen, Michaél Peeters
and Gilles Van Assche

= Alternative zu SHA-2

= Neuartiges Design: Sponge Funktionen
= Standardisierung in FIPS 202 (Verabschiedung August 2015)
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Secure Hashing Algorithm 3 Sponge Funktionen

Sponge Konstruktion

= Framework zur Konstruktion von Funktionen zur Verarbeitung
von Binardaten.

= Eine Sponge-Funktion kann Ausgaben beliebiger Lange erzeugen.

= Komponenten:
> Funktion f:{0,1}* — {0,1}?
> Kapazitat c€ {1,2,...,b—1}
> Blocklange d=b—c
> Padding-Funktion pad: N x N — {0, 1}*
= Nebenbedingung fiir das Padding: Fir alle d und £ muss
£+ len(pad(d,£)) ein Vielfaches von d sein.
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Secure Hashing Algorithm 3 Sponge Funktionen

Aufbau einer Sponge Funktion

1
1
Nachricht x Padding : Hashwert
M, My | My : hy ha h3 hy
! A A A
1
) 1 N )
& L N
dl| |0 (> > >E}> : > > >
f f f ; f f f
c||0 > Pl [l > : > > >
\_/ : \_/ \_/
Absorbing ; Squeezing
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Secure Hashing Algorithm 3 Sponge Funktionen

Algorithmus SPONGEf, pad, d|(M, r)

SPONGE(f, pad, d|(M, r)
Input: Bindrwort x € {0, 1}*, ganze Zahl d > 0
Output: Hashwert h € {0, 1}
M «— x || pad(d, len(x))
k « len(M)/d
c—b—d
Lerlege M in k d-Bit Blocke My, M,, ..., My
S=0°
fori=1to kdo
5 fIS® (M; |l 09))

N R e
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Secure Hashing Algorithm 3 Sponge Funktionen

Algorithmus SPONGE[f, pad, d|(M, r) (Forts.)

8: h« ¢

9: while /en(h) < r do
10: h < h || Truncy(S)
11: S« f5)

12: return Trunc,(2)

Bemerkung: Die Funktion Trunc.(x) liefert die ersten r Bits von x.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Permutation KECCAK-p

= |n SHA3 kommt die Permutationsfamilie KECCAK-p fiir f zum
Einsatz.

= Die Permutation KECCAK-pl[b, n,] wird festgelegt durch:

> Wortlange b € {25, 50, 100, 200, 400, 800, 1600}
> Anzahl der Iterationen n, € N

= Die Permutation wird durch eine Folge von Transformationen
(step mappings) berechnet.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von KECCAK-p[b, n,]

= Der interne Zustand S von KECCAK-plb, n,] besteht aus b Bit.
= S wird als Array A der Dimension 5 X 5 X w interpretiert, wobei

b 25 | 50 | 100 | 200 | 400 | 800 | 1600

w=>b/25 | 1|2 | 4 8 | 16 | 32 | 64
{=log,(w)| O | 1] 2 3 4 5 6

= Die Tiefe w des Arrays orientiert sich an der Wortlange
moderner Prozessoren.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von KECCAK-p|b, n,] (Forts.)

1240

GroBe: 5 x 5 x w Bit

Beachte: In der Darstellung ist die z-Achse im Zentrum.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von KECCAK-p|b, n,] (Forts.)

COO) =

Column Slice SEt
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von KECCAK-p|b, n,] (Forts.)

Konvertierung von S nach A: Fiir alle (x, y, z), wobei 0 < x < 5,
0<y<b5und0<z<w, ist:

Alx, y, 2] = SIw(b5y + x) + Z]
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von KECCAK-p|b, n,] (Forts.)

Konvertierung von A nach §:
= Fir alle (i,/), wobei 0 < i< 5und 0 < <5, ist:

Lane(i,j) = Ali,j, 01 || Ali, j, 11 || ... || Aliyj,w—1]
= Fr alle j, wobei 0 < j < 5, ist:

Plane(j) = Lane(0, ) || Lane(1,)) || ... || Lane(4, )
= |nsgesamt:

S = Plane(0) || Plane(1) || ... || Plane(4)
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Secure Hashing Algorithm 3 Permutation Keccak-p

KECCAK-p|b, n,] — Algorithmus

= Der Algorithmus zur Berechnung von KECCAK-plb, n,] ist eine
Schleife mit n, Durchlaufen.

= Der Algorithmus arbeitet auf dem dreidimensionalen Array A.

= Die Rundenfunktion lautet
RND(A, i) = ux(mt(p(0(A)))), 1),

wobei i fiir die Laufvariable steht.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion O

Ziel: Manipulation der Columns
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion © — Algorithmus

6(A)

Input: Zustandsarray A

Output: Zustandsarray A’

: foralle (x,z) mit0<x<5und0<z< wdo
Clx, z] @?:o Alx, i, z|

: foralle (x,z) mit0 < x<5und0<z< wdo

il A

Dix, z] + C[(x— 1) mod 5, Z]
@ Cl(x+ 1) mod 5,(z— 1) mod w|
. foralle (x,y,z) Mt 0 < x<5 0<y<bund0<z<wdo
Alx, y, 2] «— Alx, y, zl ® Dlx, Z|
return A’

o O1

7:
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion p

4
4 y y
y 4o
o e v TN
i y || i ||
y
Lee T v v 1
(v g [ 0 (o g [
| L A A L
) v v v (4
¢ s —(d v [

Ziel: Manipulation der Lanes
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion p — Algorithmus

p(A)
Input: Zustandsarray A
Output: Zustandsarray A’

1: forallezmit0 < z< wdo

2: A’0,0, z1 « A0, 0, Z
3:x—1,y«0

4: for t =0 to 23 do

5 forz=0to w—1 do

6: s— (z— (t+1)(t+2)/2) mod w
7 A'lx,y, z) «— Alx,y, s|

8: X' —x x—y

0: y — (2x" 4+ 3y) mod 5

10: return A’
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion p — Interpretation

= Die Funktion p fiihrt zyklische Rotationen innerhalb der Lanes
durch.

= Der Offset der Rotationen hangt von der Position der Lane ab:

x=3|x=4|x=0|x=1|x=2
y=21| 153 231 3 10 171
y=1 55 276 36 300 6
y=20 28 91 0 1 190
y=4| 120 78 210 06 253
y=3 21 136 105 45 15
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion 7t — Aufbau

'
e
0 0) @
®
Ne

Ziel: Manipulation der Slices

Prof. Dr. C. Karg (HS Aalen) Angewandte Kryptographie Kryptogr. Hashfunktionen 65 /76

Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion 7t — Algorithmus

m(A)
Input: Zustandsarray A
Output: Zustandsarray A’

1: for x=0to 4 do
2 for y=0to 4 do

3: forz=0to w—1 do

. /

4515 return A’ A'lx, y, z] «+ Al(x+ 3y) mod 5, x, Z|
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion ¥ — Aufbau

I
roar i

Ziel: Manipulation der Rows

e
fgo-

|
W

A
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion x¥ — Algorithmus

X(A)
Input: Zustandsarray A
Output: Zustandsarray A’

1: for x=0to 4 do

2 for y=0to 4 do

3: for z=0to w—1 do

4: a— 10 Al(x+ 1) modb5,y, Z
5: b+ a/\Al(x+2) mod 5, y, Z
6 A'lx, y, 2l « Alx,y,z] ® b

7: return A’

Bemerkung: x ist eine nicht-lineare Abbildung.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion t — Aufbau

Ziel: Manipulation der Bits auf Lane (0,0)
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion v — Algorithmen

RC(t)
Input: Ganze Zahl t
Output: 1 Bit
1: if t mod 255 == 0 then
2: return 1
3: R« 10000000
4: for i=1 to t mod 255 do

5 R—~O0]| R

6 R[0] < RI0] + R[8]
7 R[4] < R[4] + R[8]
8 R[5] + RI[5] + R[8]
9 R[6] «+ RI6] + RI8]

10: R« Truncg(R)
11: return R[0]
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion ¢ — Algorithmen

(A, )
Input: Zustandsarray A, Rundenindex i
Output: Zustandsarray A’

1: for x=0to 4 do

2: for y=0to 4 do

3 forz=0tow—1do

4: A'lx, y, z] — Alx,y, 2]
5: rc — Q%

6: for j=0 to { do

7: rc[2/ — 1] « RC(j+ 7i)

8: forz=0to w— 1 do

9: A’[0,0, Zz] «+ A’[0,0, z] P rc[Z]
10: return A’
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Secure Hashing Algorithm 3 Permutation Keccak-p

KECcCcAK-p[b, n,] — Algorithmus (Forts.)

KEccAK-p[b, n,](S)
Input: Zustand S € {0,1}"
Output: Aktualisierter Zustand S’ € {0, 1}>

1. w b/25; £ « log,(w)

2: Konvertiere S in ein Array A der Dimension 5 X 5 x w.
3: fori=20+12—n,to 2{+ 12 —1 do

4: A «— RND(A, /)

5. Konvertiere A in einen Bit-String S’ der Lange b.

6: return S’
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Secure Hashing Algorithm 3 Multi Range Padding

Multi-Range Padding

MRPAD(m, n)
Input: Ganze Zahl m > 1, ganze Zahl n >0
Output: Binarwort x, mit der Eigenschaft, dass n+ len(x) ein
Vielfaches von m ist
1: j« (—n—2) mod m
2: return 1 || 0/ || 1

Bemerkung: Diese Funktion nennt man auch 10*1-Padding.
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Secure Hashing Algorithm 3 Keccak[c]

= KECCAK][c] ist eine Familie von Sponge-Funktionen.

= KECCAK-p[b,2{ + 12] kommt als Rundenfunktion fzum
Einsatz.

= Die verwendete Padding-Funktion ist MRPAD.

= Zulassige Parameter sind:

> b € {25, 50,100, 200, 400, 800, 1600}
> ce{l,2,....,b—1}

= Definition:

KEccak[d(x,r) =
SPONGE[KECCAK-p[1600, 24], MRPAD, 1600 — c](x, r)
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Secure Hashing Algorithm 3 Keccak[c]

SHA-3 Hashfunktionen

Der SHA-3 Standard umfasst folgende Hashfunktionen:

SHA3-224(x) = KECCAK[448](x || 01,224)
SHA3-256(x) = KECCAK[512](x || 01, 256)
SHA3-384(x) = KECCAK[768](x || 01, 384)
SHA3-512(x) = KECCAK[1024](x || 01,512)
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Zusammenfassung

Zusammenfassung

= Kryptografische Hashfunktionen kommen in verschiedenen
kryptografischen Anwendungen zum Einsatz, z.B. bei der
Berechnung von Prifsummen.

= Zufallsorakel sind das Referenzmodell fiir die Analyse von
kryptografischen Hashfunktionen.

= Viele kryptografische Hashfunktionen wie etwa SHA-1 und
SHA-2 basisieren auf der Merkle-Damgard Konstruktion.

= Bei SHA-3 kommt mit Sponge-Funktionen ein neuartiges Design
zum Einsatz.
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