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Einleitung Definition Hashfunktion

Definition Hashfunktion

Definition. Eine Hashfunktion ist eine Abbildung h, die mindestens
die folgenden zwei Eigenschaften besitzt:

• Kompression: h bildet einen Binärstring beliebiger Länge in einen
Binärstring fester Länge r ab.

• Effiziente Berechnung. Für jede Eingabe x ist h(x) effizient
berechenbar.
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Einleitung Definition Hashfunktion

Unterscheidung

Modification Detection Codes (MDCs):
• Berechnung eines Hashwerts, mittels der die Integrität der

zugehörigen Nachricht überprüfbar ist

Message Authentication Codes (MACs):
• Berechnung eine Prüfsumme, mit der man die Integrität der

Nachricht sowie die Echtheit des Absenders überprüfen kann
• Einsatz eines geheimen Schlüssels als Teil der Eingabe

Bemerkung: MACs sind aus MDCs konstruierbar.
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Einleitung Definition Hashfunktion

Arten von MDCs

• Allgemeine Hashfunktionen ⇝ bilden einen Binärstring
beliebiger Länge auf einen Hashwert fester Länge ab.

• Kompressionsfunktionen ⇝ bilden Binärwörter der Länge d auf
Binärwörter der Länge r ab, wobei d > r.

• Nichtkomprimierende Hashfunktion ⇝ bilden Binärwörter der
Länge d auf Binärwörter der Länge d ab. Dies sind zum Beispiel
One-Way Permutationen.
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Sicherheit von MDCs Sicherheitsanforderungen

Sicherheitsanfordungen für MDCs

• Preimage Resistance (One-Way): Für fast alle Hashwerte y ist
die Berechnung eines Urbilds x mit h(x) = y nicht effizient
durchführbar.

• 2nd Preimage Resistance (Weak Collision Resistance): Für fast
alle Nachrichten x ist die Berechnung einer zweiten Nachricht x ′

mit h(x ′) = h(x) nicht effizient durchführbar.
• Collision Resistance (Strong Collision Resistance): Die Suche

zweier Nachrichten verschiedener x und x ′ mit h(x) = h(x ′) ist
nicht effizient durchführbar.
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Sicherheit von MDCs Sicherheitsanforderungen

Beispiel: Modulare Quadratur

Beispiel: Ist p eine Primzahl, dann besitzt die Abbildung

f(x) = (x2 − 1) mod p

keine Preimage Resistance, da man effizient die Quadratwurzeln
berechnen kann.
Ist n das Produkt zweier hinreichend großer, zufällig gewählter
Primzahlen, dann besitzt die Funktion

f(x) = x2 mod n

Preimage Resistance, falls das Faktorisierungsproblem nicht effizient
berechenbar ist. 2nd Preimage Resistance ist nicht vorhanden, da x
und n − x denselben Hashwert x2 mod n besitzen.
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Sicherheit von MDCs Zufallsorakel

Zufallsorakel

• Referenzmodell für kryptografische Hashfunktionen
• Ziel: Bestimmung von optimalen Laufzeitschranken für mögliche

Angriffe
• Komplexitätsmaß: Anzahl der Aufrufe der Hashfunktion
• Idee: für jede Nachricht wird ein Hashwert zufällig unter

Gleichverteilung ausgewählt
• Black-Box-Ansatz: der Nutzer kann Hashwerte berechnen, erhält

aber keine Informationen über den Aufbau der Hashfunktion
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Sicherheit von MDCs Zufallsorakel

Zufallsorakel – Algorithmus
RandomOracle(d,r)(x)
Input: Binärstring x ∈ {0, 1}d
Output: Binärstring y ∈ {0, 1}r
External: Zweispaltige Tabelle T (z.B. Rot-Schwarz-Baum)

1: if x ∈ T then
2: y← T[x]
3: else
4: Ziehe y zufällig unter Gleichverteilung aus {0, 1}r.
5: T[x]← y
6: return y

Bemerkung: Der Inhalt von T bleibt zwischen zwei Aufrufen von
RandomOracle(d,r) erhalten.
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Sicherheit von MDCs Zufallsorakel

Eine wichtige Eigenschaft

Eigenschaft 1. Ist f : {0, 1}d 7→ {0, 1}r ein Zufallsorakel, dann gilt

Prob[f(x) = y | f(x1) = y1, . . . , f(xk) = yk ] =
1
2r

für alle x ∈ {0, 1}d \ {x1, . . . , xk} und alle y ∈ {0, 1}r.

Mit anderen Worten: Für jede neue Nachricht x wird ein Hashwert
zufällig unter Gleichverteilung ausgewählt, unabhängig von den bisher
festgelegten Hashwerten.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern

FindPreimage(f, y, q)
Input: Hashfunktion f : {0, 1}d 7→ {0, 1}r, Hashwert y ∈ {0, 1}r, ganze
Zahl q ≥ 1
Output: x ∈ {0, 1}d mit f(x) = y oder Failure

1: Wähle eine Menge S ⊆ {0, 1}d mit ‖S‖ = q.
2: for jedes x ∈ S do
3: if f(x) = y then
4: return x
5: return Failure
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Satz 1. Angenommen, f : {0, 1}d 7→ {0, 1}r ist ein Zufallsorakel. Dann
gilt für alle y ∈ {0, 1}r und alle q ≥ 1: Die Wahrscheinlichkeit, dass
der Algorithmus FindPreimage(f, y, q) ein Urbild von y bezüglich f
findet, ist gleich

1 −

(
2r − 1

2r

)q
.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Beweis. Seien die Menge S ⊆ {0, 1}d, ‖S‖ = q, und der Hashwert
y ∈ {0, 1}r beliebig gewählt.
Angenommen, S enthält die paarweise verschiedenen Elemente
x1, . . . , xq.
Wegen Eigenschaft 1 gilt

Prob[f(xi) = y] = 1
2r

und
Prob[f(xi) 6= y] = 2r − 1

2r

für alle i = 1, . . . , q.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Die Wahrscheinlichkeit, dass der Algorithmus kein Urbild für y findet,
ist

Prob[f(x1) 6= y ∧ . . .∧ f(xq) 6= y ] =

(
2r − 1

2r

)q
.

Folglich ist die Erfolgswahrscheinlichkeit des Algorithmus gleich

1 − Prob[f(x1) 6= y ∧ . . .∧ f(xq) 6= y ] = 1 −

(
2r − 1

2r

)q
.

Somit ist der Satz bewiesen.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Frage: Für welchen Wert von q ist die Erfolgswahrscheinlichkeit von
FindPreimage(f, y, q) gleich 1

2?
Antwort: Wähle q so, dass

1 −

(
2r − 1

2r

)q
≥ 1

2

beziehungsweise (
2r − 1

2r

)q
≤ 1

2 .
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Hilfreich: Potenzreihe für ex:

ex =

∞∑

n=0

xn

n! = 1 + x + x2

2! +
x3

3! + . . .

Folgerungen:
• Für alle x gilt: ex ≥ 1 + x.
• Ist |x| � 1, dann ist ex ≈ 1 + x.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)
Grafik:
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)
Anwendung:

(
2r − 1

2r

)q
=

(
1 −

1
2r

)q
≤
(

e− 1
2r
)q

= e− q
2r

Die Umformung der Ungleichung

e− q
2r ≤ 1

2
liefert

q ≥ ln(2) · 2r.

Ergebnis: Man muss ungefähr 2r verschiedene Elemente aus {0, 1}d
auswerten, um mit einer Wahrscheinlichkeit von 50% eine Kollision
zu finden.
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern

FindSecondPreimage(f, x, q)
Input: Hashfunktion f : {0, 1}d 7→ {0, 1}r, Nachricht x ∈ {0, 1}d, ganze
Zahl q ≥ 2
Output: x ′ ∈ {0, 1}d mit f(x) = f(x ′) oder Failure

1: y← f(x)
2: Wähle eine Menge S ⊆ {0, 1}d \ {x} mit ‖S‖ = q − 1.
3: for jedes x ′ ∈ S do
4: if f(x ′) = y then
5: return x ′

6: return Failure
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Sicherheit von MDCs Zufallsorakel

Suche von Urbildern (Forts.)

Satz 2. Angenommen, f : {0, 1}d 7→ {0, 1}r ist ein Zufallsorakel. Dann
gilt für alle x ∈ {0, 1}d und alle q ≥ 1: Die Wahrscheinlichkeit, dass
der Algorithmus FindSecondPreimage(f, x, q) ein von x
verschiedenes Urbild von f(x) findet, ist gleich

1 −

(
2r − 1

2r

)q−1
.

Beweis: analog zu Satz 1.
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen

FindCollision(f, q)
Input: Hashfunktion f, ganze Zahl q ≥ 2
Output: Kollision für f oder Failure

1: Wähle eine Menge S ⊆ {0, 1}d mit ‖S‖ = q.
2: for jedes x ∈ S do
3: Y[x]← f(x)
4: if es gibt x, x ′ ∈ S mit x 6= x ′ und Y[x] = Y[x ′] then
5: return (x, x ′)
6: else
7: return Failure
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Satz 3. Angenommen, f : {0, 1}d 7→ {0, 1}r ist ein Zufallsorakel. Dann
gilt für alle q ≥ 2: Die Wahrscheinlichkeit, dass der Algorithmus
FindCollision(f, q) eine Kollision für f findet, ist gleich

1 −

(
2r − 1

2r

)(
2r − 2

2r

)
· · ·
(

2r − q + 1
2r

)
.
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Beweis. Anwendung des Geburtstagsparadoxons: Sei S ⊆ {0, 1}d,
‖S‖ = q, beliebig gewählt.
Angenommen, S enthält die paarweise verschiedenen Elemente
x1, . . . , xq. Dann steht Ei für das Ereignis

f(xi) /∈ {f(x1), . . . , f(xi−1))},

wobei i = 1, . . . , q.
Es ist Prob[E1] = 1. Wegen Eigenschaft 1 gilt:

Prob[Ei | E1 ∩ E2 ∩ . . . ∩ Ei−1] =
2r − i + 1

2r
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)
Die Wahrscheinlichkeit, dass der Algorithmus keine Kollision findet,
ist

Prob[E1 ∩ E2 ∩ . . . ∩ Eq].

Durch Anwendung des allgemeinen Multiplikationssatzes folgt:

Prob[E1 ∩ E2 ∩ . . . ∩ Eq] =(
2r − 1

2r

)(
2r − 2

2r

)
· · ·
(

2r − q + 1
2r

)
.

Die Wahrscheinlichkeit, dass eine Kollision gefunden wird, ist

1 − Prob[E1 ∩ E2 ∩ . . . ∩ Eq].

Somit ist der Satz bewiesen.
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Frage: Wie groß muss q gewählt werden, dass mit
Wahrscheinlichkeit von 50% eine Kollision gefunden wird?
Antwort: Wähle q so, dass

1 −

q−1∏

i=1

(
2r − i

2r

)
≥ 1

2

beziehungsweise
q−1∏

i=1

(
2r − i

2r

)
≤ 1

2 .
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Umformen:
q−1∏

i=1

(
2r − i

2r

)
=

q−1∏

i=1

(
1 −

i
2r

)

Da 1 + x ≈ ex, falls |x| � 1, folgt:

q−1∏

i=1

(
1 −

i
2r

)
≈

q−1∏

i=1
e− i

2r = e−(
∑q−1

i=1
i

2r )
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Abschätzung:
e−(

∑q−1
i=1

i
2r ) ≤ 1

2
genau dann, wenn

−

( q−1∑

i=1

i
2r

)
≤ ln

(
1
2

)

genau dann, wenn
q2 − q

2r ≥ ln(2)
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Sicherheit von MDCs Suche von Kollisionen

Suche von Kollisionen (Forts.)

Da q2 ≥ q2 − q für alle q > 0, folgt

q2

2r ≥ ln(2)

und somit
q ≥

√
ln(2)2r = Ω(2r/2)

Ergebnis: Man muss etwa 2r/2 verschiedene Elemente aus {0, 1}d
untersuchen, um mit einer Wahrscheinlichkeit von 50% eine Kollision
zu finden.
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Sicherheit von MDCs Suche von Kollisionen

Zusammenfassung

Aufwandsabschätzung für eine Hashfunktion auf Basis eines
Zufallsorakels:

Angriff Aufwand
Berechnung eines Urbilds 2r

Berechnung eines zweiten Urbilds 2r

Berechnung einer Kollision 2r/2

Bemerkung: Man kann beweisen, dass die obigen Algorithmen für
Zufallsorakel optimal sind.
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Damgård-Merkle Verfahren

Damgård-Merkle Verfahren

• Problem: Zufallsorakel sind in der Praxis nicht einsetzbar
• Lösung: Einsatz eines Verfahrens, das auf Arbeiten von Ivan

Damgård und Ralph Merkle basiert
• Idee: Konstruktion einer Hashfunktion durch iterative

Anwendung einer Kompressionsfunktion
• Fakt: Ist die Kompressionsfunktion kollisionsresistent, dann

besitzt auch die Hashfunktion diese Eigenschaft.
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Damgård-Merkle Verfahren

Damgård-Merkle Konstruktion – Idee

Nachricht x Padding
M1

f

M2

f

M3

f

Mk−1

f

Mk

fhinit h(x)
h1 h2 hk−1 hk

Prof. Dr. C. Karg (HS Aalen) Angewandte Kryptographie Kryptogr. Hashfunktionen 30 / 76



Damgård-Merkle Verfahren

Damgård-Merkle Konstruktion – Algorithmus

DamgardMerkleHashing(x)
Input: Nachricht x ∈ {0, 1}∗
Output: Hashwert y ∈ {0, 1}r
External: Kompressionsfunktion f : {0, 1}n+r 7→ {0, 1}r

1: Verlängere x durch Einsatz einer geeigneten Paddingfunktion so,
dass die Länge von x ein Vielfaches von r ist.

2: Zerlege x in die r-Bit Blöcke M1,M2, . . . ,Mk.
3: H0 ← 0r

4: for i← 1, . . . , k do
5: Hi ← f(Hi−1||Mi)
6: return Hk
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Damgård-Merkle Verfahren

Hashfunktionen auf Basis von Damgård-Merkle

• MD4 von Ron Rivest
• MD5 von Ron Rivest
• SHA1 (NIST-Standard)
• SHA2-Familie (NIST-Standard)
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SHA-256 Übersicht

Secure Hash Algorithm 2 Familie

Algorithmus Nachrichten-
länge

Block-
länge

Wort-
länge

Länge
Prüfsumme

SHA-1 < 264 512 32 160
SHA-224 < 264 512 32 224
SHA-256 < 264 512 32 256
SHA-384 < 2128 1024 64 384
SHA-512 < 2128 1024 64 512
SHA-512/224 < 2128 1024 64 224
SHA-512/256 < 2128 1024 64 256

(Alle Angaben in Bit)
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SHA-256 Übersicht

Aufbau von SHA-256

• SHA-256 arbeitet auf Basis von 32-Bit Wörtern.
• Der interne Zustand umfasst 256 Bit, aufgeteilt in 8 32-Bit

Wörter.
• Die zu verarbeitende Nachricht wird in 512-Bit Blöcke aufgeteilt.
• Die Kompressionsfunktion besteht aus einer Schleife mit 64

Runden.
• Die eingesetzten Konstanten werden anhand der

Nachkommastellen von Quadrat- und Kubikwurzeln von
Primzahlen berechnet.
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SHA-256 Operationen

Operationen

Wortlänge: w ∈ {32, 64}
Operationen:

• Logische Operationen: ∧, ∨, ⊕, ¬
• Addition modulo 2w

• Rechts-Shift: SHRn(x) = x � n, wobei 0 ≤ n ≤ w − 1
• Links-Shift: SHLn(x) = x � n, wobei 0 ≤ n ≤ w − 1
• Rechts-Rotation: ROTRn(x) = (x � n)∨ (x � w − n), wobei

0 ≤ n ≤ w − 1
• Links-Rotation: ROTLn(x) = (x � n)∨ (x � w − n), wobei

0 ≤ n ≤ w − 1
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SHA-256 Funktionen

Funktionen

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)
Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

Σ
{256}
0 (x) = ROTR2(x)⊕ ROTR13(x)⊕ ROTR22(x)

Σ
{256}
1 (x) = ROTR6(x)⊕ ROTR11(x)⊕ ROTR25(x)

σ
{256}
0 (x) = ROTR7(x)⊕ ROTR18(x)⊕ SHR3(x)

σ
{256}
1 (x) = ROTR17(x)⊕ ROTR19(x)⊕ SHR10(x)

Bemerkung: Jede der Funktionen verarbeitet 32-Bit Wörter.
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SHA-256 Konstanten

Konstanten K{256}
i

• In SHA-256 kommen die 32-Bit Konstanten
K{256}

0 ,K{256}
1 , . . . ,K{256}

63 zum Einsatz.
• K{256}

i ist gleich den ersten 32 Bit der Nachkommastellen von
3
√pi+1, wobei pi+1 die (i + 1)-te Primzahl ist.

• Die Konstanten sind (von links oben nach rechts unten):
428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174
e49b69c1 efbe4786 0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da
983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85
a2bfe8a1 a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070
19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3
748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2
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SHA-256 Konstanten

Beispiel: Berechnung von K{256}
3

Beispiel. Berechnung von K{256}
3 .

Die vierte Primzahl ist p4 = 7. Also ist:

3
√p4 =

3√7 = 1.91293118277 . . .

Berechnung der Nachkommastellen im Hexadezimalformat:

(1.91293118277 − 1) · 256 = 233.71038279 (233)10 = (e9)16
(233.71038279 − 233) · 256 = 181.857994171 (181)10 = (b5)16
(181.857994171 − 181) · 256 = 219.646507848 (219)10 = (db)16
(219.646507848 − 219) · 256 = 165.506009102 (165)10 = (a5)16

Ergebnis: K{256}
3 = (e9b5dba5)16.
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SHA-256 Konstanten

Konstanten H(0)
i

• Die H-Konstanten werden zur Initialisierung des Zustands der
Kompressionsfunktion eingesetzt.

• Die Werte der Konstanten sind die ersten 32 Bit der
Nachkommastellen der Quadratwurzeln der ersten acht
Primzahlen.

• Die Konstanten sind:

H(0)
0 = 6a09e667

H(0)
1 = bb67ae85

H(0)
2 = 3c6ef372

H(0)
3 = a54ff53a

H(0)
4 = 510e527f

H(0)
5 = 9b05688c

H(0)
6 = 1f83d9ab

H(0)
7 = 5be0cd19
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SHA-256 Padding

Padding einer Nachricht

Padding(x)
Input: Nachricht x ∈ {0, 1}∗, wobei len(x) < 264

Output: Padding p ∈ {0, 1}∗, so dass len(x||p) ein Vielfaches von 512
ist
External: Funktion bin64(ℓ) zur Berechnung der 64-Bit
Binärkodierung der Zahl ℓ ∈ {0, 1, . . . , 264 − 1}

1: ℓ← len(x)
2: k← (448 − ℓ− 1) mod 512
3: p← 1||0k||bin64(ℓ)
4: return p
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SHA-256 Padding

Beispiel: Padding

Beispiel: Berechnung des Paddings der Nachricht x = abc, bzw.

x = 01100001︸ ︷︷ ︸
=a

01100010︸ ︷︷ ︸
=b

01100011︸ ︷︷ ︸
=c

.

Wegen ℓ = 24 ist

k = (448 − ℓ− 1) mod 512 = 423.

Das Padding ist:

p = 1 00 . . . 00︸ ︷︷ ︸
423 Bit

00 . . . 0011000︸ ︷︷ ︸
64 Bit

Es gilt: len(x||p) = 24 + 1 + 423 + 64 = 512 Bit.
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SHA-256 Kompressionsfunktion

Kompressionsfunktion – Aufbau

a b c d e f g h

a b c d e f g h

Choose ∑{256}
1

T1

Maj ∑{256}
0

T2

Wt K{256}
t
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SHA-256 Kompressionsfunktion

Kompressionsfunktion – Algorithmus

SHA256Compress((a, b, c, d, e, f, g, h),K,W)
Input: Zustand (a, b, c, d, e, f, g, h), Wort K, Wort W
Output: Aktualisierter Zustand (a, b, c, d, e, f, g, h)

1: T1 = h + Σ
{256}
1 (e) + Ch(e, f, g) + K + W

2: T2 = Σ
{256}
0 (a) + Maj(a, b, c)

3: h ′ ← g; g ′ ← f
4: f ′ ← e; e ′ ← d + T1
5: d ′ ← c; c ′ ← b
6: b ′ ← a; a ′ ← T1 + T2
7: return (a ′, b ′, c ′, d ′, e ′, f ′, g ′, h ′)
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SHA-256 Verarbeitung eines Blocks

Verarbeitung eines Blocks

SHA256ProcessBlock(S,M)
Input: Zustand S = (a, b, c, d, e, f, g, h), 512-Bit Block M
Output: Aktualisierter Zustand S ′

1: Zerlege M in 16 32-Bit Blöcke B0,B1, . . . ,B15.
2: for t = 0, 1, 2, . . . , 63 do
3: if t ≤ 15 then
4: Wt ← Bt
5: else
6: Wt ← σ{256}1(Wt−2) + Wt−7 + σ

{256}
0 (Wt−15) + Wt−16

7: for t = 0, 1, 2, . . . , 63 do
8: S ′ ← SHA256Compress(S,K{256}

t ,Wt)
9: return S ′
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SHA-256 Verarbeitung eines Blocks

Verarbeitung einer Nachricht
SHA256(x)
Input: Nachricht x ∈ {0, 1}∗, wobei len(x) < 264.
Output: Prüfsumme h ∈ {0, 1}256

1: M← x || Padding(x)
2: Zerlege M in die 512-Bit Blöcke M0,M1, . . . ,Mn−1
3: for i = 0, 1, 2, . . . , n − 1 do
4: S← (H(i)

0 ,H(i)
1 ,H(i)

2 ,H(i)
3 ,H(i)

4 ,H(i)
5 ,H(i)

6 ,H(i)
7 )

5: (a, b, c, d, e, f, g, h)← SHA256ProcessBlock(S,Mi)

6: H(i+1)
0 ← a + H(i)

0 ; H(i+1)
1 ← b + H(i)

1
7: H(i+1)

2 ← c + H(i)
2 ; H(i+1)

3 ← d + H(i)
3

8: H(i+1)
4 ← e + H(i)

4 ; H(i+1)
5 ← f + H(i)

5
9: H(i+1)

6 ← g + H(i)
6 ; H(i+1)

7 ← h + H(i)
7

10: return H(n)
0 || H(n)

1 || H(n)
2 || H(n)

3 || H(n)
4 || H(n)

5 || H(n)
6 || H(n)

7
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SHA-224

SHA-224

SHA224(x)
Input: Nachricht x ∈ {0, 1}∗, wobei len(x) < 264.
Output: Prüfsumme h ∈ {0, 1}224

1: h← SHA256(x)
2: h ′ ← die ersten 224 Bit von h
3: return h ′
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SHA-224

SHA-384 und SHA-512

• SHA-512 arbeitet auf Basis von 64-Bit Wörtern.
• Der interne Zustand von SHA-512 beinhaltet acht 64-Bit

Wörter.
• Die Kompressionsfunktion von SHA-512 durchläuft 80 Runden.
• Die Konstanten von SHA-512 basieren auf den

Nachkommastellen von Quadrat- und Kubikwurzeln von
Primzahlen.

• SHA-384 ist eine Variante von SHA-512, bei der die Prüfsumme
auf 384 Bit verkürzt wird.
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Secure Hashing Algorithm 3 Übersicht

Secure Hashing Algorithm 3 (Keccak)

• Entwicklung von Guido Bertoni, Joan Daemen, Michaël Peeters
and Gilles Van Assche

• Alternative zu SHA-2
• Neuartiges Design: Sponge Funktionen
• Standardisierung in FIPS 202 (Verabschiedung August 2015)
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Secure Hashing Algorithm 3 Sponge Funktionen

Sponge Konstruktion

• Framework zur Konstruktion von Funktionen zur Verarbeitung
von Binärdaten.

• Eine Sponge-Funktion kann Ausgaben beliebiger Länge erzeugen.
• Komponenten:

▷ Funktion f : {0, 1}b 7→ {0, 1}b
▷ Kapazität c ∈ {1, 2, . . . , b − 1}
▷ Blocklänge d = b − c
▷ Padding-Funktion pad : N × N 7→ {0, 1}∗

• Nebenbedingung für das Padding: Für alle d und ℓ muss
ℓ+ len(pad(d, ℓ)) ein Vielfaches von d sein.
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Secure Hashing Algorithm 3 Sponge Funktionen

Aufbau einer Sponge Funktion

Absorbing Squeezing

Nachricht x Padding Hashwert

0

0

d

c

M1

f

M2

f

Mk

f

h1

f

h2

f

h3

f

h4
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Secure Hashing Algorithm 3 Sponge Funktionen

Algorithmus Sponge[f, pad, d](M, r)

Sponge[f, pad, d](M, r)
Input: Binärwort x ∈ {0, 1}∗, ganze Zahl d > 0
Output: Hashwert h ∈ {0, 1}r

1: M← x || pad(d, len(x))
2: k← len(M)/d
3: c← b − d
4: Zerlege M in k d-Bit Blöcke M1,M2, . . . ,Mk
5: S = 0b

6: for i = 1 to k do
7: S← f(S ⊕ (Mi || 0c))
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Secure Hashing Algorithm 3 Sponge Funktionen

Algorithmus Sponge[f, pad, d](M, r) (Forts.)

8: h← ε

9: while len(h) < r do
10: h← h || Truncd(S)
11: S← f(S)
12: return Truncr(Z)

Bemerkung: Die Funktion Truncr(x) liefert die ersten r Bits von x.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Permutation Keccak-p

• In SHA3 kommt die Permutationsfamilie Keccak-p für f zum
Einsatz.

• Die Permutation Keccak-p[b, nr] wird festgelegt durch:
▷ Wortlänge b ∈ {25, 50, 100, 200, 400, 800, 1600}
▷ Anzahl der Iterationen nr ∈ N

• Die Permutation wird durch eine Folge von Transformationen
(step mappings) berechnet.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von Keccak-p[b, nr]

• Der interne Zustand S von Keccak-p[b, nr] besteht aus b Bit.
• S wird als Array A der Dimension 5 × 5 × w interpretiert, wobei

b 25 50 100 200 400 800 1600
w = b/25 1 2 4 8 16 32 64
ℓ = log2(w) 0 1 2 3 4 5 6

• Die Tiefe w des Arrays orientiert sich an der Wortlänge
moderner Prozessoren.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von Keccak-p[b, nr] (Forts.)

3 4 0 1 2
x

3

4

0

1

2

y

0
1

2

w − 1

z

Größe: 5 × 5 × w Bit

Beachte: In der Darstellung ist die z-Achse im Zentrum.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von Keccak-p[b, nr] (Forts.)

Bit Row

Lane

Column Slice

Plane

Sheet
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von Keccak-p[b, nr] (Forts.)

Konvertierung von S nach A: Für alle (x, y, z), wobei 0 ≤ x < 5,
0 ≤ y < 5 und 0 ≤ z < w, ist:

A[x, y, z] = S[w(5y + x) + z]
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Secure Hashing Algorithm 3 Permutation Keccak-p

Interner Zustand von Keccak-p[b, nr] (Forts.)

Konvertierung von A nach S:
• Für alle (i, j), wobei 0 ≤ i < 5 und 0 ≤ j < 5, ist:

Lane(i, j) = A[i, j, 0] || A[i, j, 1] || . . . || A[i, j,w − 1]

• Für alle j, wobei 0 ≤ j < 5, ist:

Plane(j) = Lane(0, j) || Lane(1, j) || . . . || Lane(4, j)

• Insgesamt:

S = Plane(0) || Plane(1) || . . . || Plane(4)
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Secure Hashing Algorithm 3 Permutation Keccak-p

Keccak-p[b, nr] – Algorithmus

• Der Algorithmus zur Berechnung von Keccak-p[b, nr] ist eine
Schleife mit nr Durchläufen.

• Der Algorithmus arbeitet auf dem dreidimensionalen Array A.
• Die Rundenfunktion lautet

Rnd(A, i) = ι(χ(π(ρ(θ(A)))), i),

wobei i für die Laufvariable steht.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion θ

∑ ∑

Ziel: Manipulation der Columns
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion θ – Algorithmus

θ(A)
Input: Zustandsarray A
Output: Zustandsarray A ′

1: for alle (x, z) mit 0 ≤ x < 5 und 0 ≤ z < w do
2: C[x, z]←⊕4

i=0 A[x, i, z]
3: for alle (x, z) mit 0 ≤ x < 5 und 0 ≤ z < w do
4:

D[x, z]← C[(x − 1) mod 5, z]
⊕C[(x + 1) mod 5, (z − 1) mod w]

5: for alle (x, y, z) mit 0 ≤ x < 5, 0 ≤ y < 5 und 0 ≤ z < w do
6: A[x, y, z]← A[x, y, z]⊕ D[x, z]
7: return A ′
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion ρ

Ziel: Manipulation der Lanes
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion ρ – Algorithmus

ρ(A)
Input: Zustandsarray A
Output: Zustandsarray A ′

1: for alle z mit 0 ≤ z < w do
2: A ′[0, 0, z]← A[0, 0, z]
3: x← 1; y← 0
4: for t = 0 to 23 do
5: for z = 0 to w − 1 do
6: s← (z − (t + 1)(t + 2)/2) mod w
7: A ′[x, y, z]← A[x, y, s]
8: x ′ ← x; x← y
9: y← (2x ′ + 3y) mod 5

10: return A ′

Prof. Dr. C. Karg (HS Aalen) Angewandte Kryptographie Kryptogr. Hashfunktionen 63 / 76

Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion ρ – Interpretation

• Die Funktion ρ führt zyklische Rotationen innerhalb der Lanes
durch.

• Der Offset der Rotationen hängt von der Position der Lane ab:

x = 3 x = 4 x = 0 x = 1 x = 2
y = 2 153 231 3 10 171
y = 1 55 276 36 300 6
y = 0 28 91 0 1 190
y = 4 120 78 210 66 253
y = 3 21 136 105 45 15
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion π – Aufbau

Ziel: Manipulation der Slices
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion π – Algorithmus

π(A)
Input: Zustandsarray A
Output: Zustandsarray A ′

1: for x = 0 to 4 do
2: for y = 0 to 4 do
3: for z = 0 to w − 1 do
4: A ′[x, y, z]← A[(x + 3y) mod 5, x, z]
5: return A ′
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion χ – Aufbau

∧ ∧ ∧ ∧ ∧

Ziel: Manipulation der Rows
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion χ – Algorithmus

χ(A)
Input: Zustandsarray A
Output: Zustandsarray A ′

1: for x = 0 to 4 do
2: for y = 0 to 4 do
3: for z = 0 to w − 1 do
4: a← 1 ⊕ A[(x + 1) mod 5, y, z]
5: b← a ∧ A[(x + 2) mod 5, y, z]
6: A ′[x, y, z]← A[x, y, z]⊕ b
7: return A ′

Bemerkung: χ ist eine nicht-lineare Abbildung.
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion ι – Aufbau

Ziel: Manipulation der Bits auf Lane (0, 0)
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion ι – Algorithmen
RC(t)
Input: Ganze Zahl t
Output: 1 Bit

1: if t mod 255 == 0 then
2: return 1
3: R← 10000000
4: for i = 1 to t mod 255 do
5: R← 0 || R
6: R[0]← R[0] + R[8]
7: R[4]← R[4] + R[8]
8: R[5]← R[5] + R[8]
9: R[6]← R[6] + R[8]

10: R← Trunc8(R)
11: return R[0]
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Secure Hashing Algorithm 3 Permutation Keccak-p

Funktion ι – Algorithmen

ι(A, i)
Input: Zustandsarray A, Rundenindex i
Output: Zustandsarray A ′

1: for x = 0 to 4 do
2: for y = 0 to 4 do
3: for z = 0 to w − 1 do
4: A ′[x, y, z]← A[x, y, z]
5: rc← 0w

6: for j = 0 to ℓ do
7: rc[2j − 1]← RC(j + 7i)
8: for z = 0 to w − 1 do
9: A ′[0, 0, z]← A ′[0, 0, z]⊕ rc[z]

10: return A ′
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Secure Hashing Algorithm 3 Permutation Keccak-p

Keccak-p[b, nr] – Algorithmus (Forts.)

Keccak-p[b, nr](S)
Input: Zustand S ∈ {0, 1}b
Output: Aktualisierter Zustand S ′ ∈ {0, 1}b

1: w← b/25; ℓ← log2(w)
2: Konvertiere S in ein Array A der Dimension 5 × 5 × w.
3: for i = 2ℓ+ 12 − nr to 2ℓ+ 12 − 1 do
4: A← Rnd(A, i)
5: Konvertiere A in einen Bit-String S ′ der Länge b.
6: return S ′
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Secure Hashing Algorithm 3 Multi Range Padding

Multi-Range Padding

MRPad(m, n)
Input: Ganze Zahl m ≥ 1, ganze Zahl n ≥ 0
Output: Binärwort x, mit der Eigenschaft, dass n + len(x) ein
Vielfaches von m ist

1: j← (−n − 2) mod m
2: return 1 || 0j || 1

Bemerkung: Diese Funktion nennt man auch 10∗1-Padding.
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Secure Hashing Algorithm 3 Keccak[c]

Keccak[c]

• Keccak[c] ist eine Familie von Sponge-Funktionen.
• Keccak-p[b, 2ℓ+ 12] kommt als Rundenfunktion f zum

Einsatz.
• Die verwendete Padding-Funktion ist MRPad.
• Zulässige Parameter sind:

▷ b ∈ {25, 50, 100, 200, 400, 800, 1600}
▷ c ∈ {1, 2, . . . , b − 1}

• Definition:

Keccak[c](x, r) =
Sponge[Keccak-p[1600, 24],MRPad, 1600 − c](x, r)
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Secure Hashing Algorithm 3 Keccak[c]

SHA-3 Hashfunktionen

Der SHA-3 Standard umfasst folgende Hashfunktionen:

SHA3-224(x) = Keccak[448](x || 01, 224)
SHA3-256(x) = Keccak[512](x || 01, 256)
SHA3-384(x) = Keccak[768](x || 01, 384)
SHA3-512(x) = Keccak[1024](x || 01, 512)
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Zusammenfassung

Zusammenfassung

• Kryptografische Hashfunktionen kommen in verschiedenen
kryptografischen Anwendungen zum Einsatz, z.B. bei der
Berechnung von Prüfsummen.

• Zufallsorakel sind das Referenzmodell für die Analyse von
kryptografischen Hashfunktionen.

• Viele kryptografische Hashfunktionen wie etwa SHA-1 und
SHA-2 basisieren auf der Merkle-Damgård Konstruktion.

• Bei SHA-3 kommt mit Sponge-Funktionen ein neuartiges Design
zum Einsatz.
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